Impaired wound healing and angiogenesis in eNOS-deficient mice.
نویسندگان
چکیده
A role for nitric oxide (NO) in wound healing has been proposed; however, the absolute requirement of NO for wound healing in vivo and the contribution of endothelial NO synthase (eNOS) have not been determined. Experiments were carried out using eNOS gene knockout (KO) mice to determine the requirement for eNOS on wound closure and wound strength. Excisional wound closure was significantly delayed in the eNOS KO mice (29.4 ± 2.2 days) compared with wild-type (WT) controls (20.2 ± 0.4 days). At 10 days, incisional wound tensile strength demonstrated a 38% reduction in the eNOS KO mice. Because effective wound repair requires growth factor-stimulated angiogenesis, in vitro and in vivo angiogenesis assays were performed in the mice to assess the effects of eNOS deficiency on angiogenesis. Endothelial cell sprouting assays confirmed in vitro that eNOS is required for proper endothelial cell migration, proliferation, and differentiation. Aortic segments harvested from eNOS KO mice cultured with Matrigel demonstrated a significant reduction in endothelial cell sprouting and [3H]thymidine incorporation compared with WT mice at 5 days. Capillary ingrowth into subcutaneously implanted Matrigel plugs was significantly reduced in eNOS KO mice (2.67 ± 0.33 vessels/plug) compared with WT mice (10.17 ± 0.79 vessels/plug). These results clearly show that eNOS plays a significant role in facilitating wound repair and growth factor-stimulated angiogenesis.
منابع مشابه
Hydrogen sulfide improves vessel formation of the ischemic adductor muscle and wound healing in diabetic db/db mice
Objective(s): It has been demonstrated that hydrogen sulfide plays a vital role in physiological and pathological processes such as regulating inflammation, oxidative stress, and vessel relaxation. The aim of the study was to explore the effect of hydrogen sulfide on angiogenesis in the ischemic adductor muscles of type 2 diabetic db/db mice and ischemic diabetic wound...
متن کاملSulfate-Deficient Mice Retarded Tumor Growth in Perlecan Heparan Impaired Angiogenesis, Delayed Wound Healing and Updated Version
Perlecan, a modular proteoglycan carrying primary heparan sulfate (HS) side chains, is a major component of blood vessel basement membranes. It sequesters growth factors such as fibroblast growth factor 2 (FGF-2) and regulates the ligand-receptor interactions on the cell surface, and thus it has been implicated in the control of angiogenesis. Both stimulatory and inhibitory effects of perlecan ...
متن کاملRelaxin improves multiple markers of wound healing and ameliorates the disturbed healing pattern of genetically diabetic mice
Diabetic mice are characterized by a disrupted expression pattern of VEGF (vascular endothelial growth factor), and impaired vasculogenesis during healing. Experimental evidence suggests that RLX (relaxin) can improve several parameters associated with wound healing. Therefore we investigated the effects of porcine-derived RLX in diabetes-related wound-healing defects in genetically diabetic mi...
متن کاملJunctional Adhesion Molecule-A Regulates Vascular Endothelial Growth Factor Receptor-2 Signaling-Dependent Mouse Corneal Wound Healing
Inflammation and angiogenesis are integral parts of wound healing. However, excessive and persistent wound-induced inflammation and angiogenesis in an avascular tissue such as the cornea may be associated with scarring and visual impairment. Junctional adhesion molecule A (Jam-A) is a tight junction protein that regulates leukocyte transmigration as well as fibroblast growth factor-2 (FGF-2)-in...
متن کاملImpaired angiogenesis, delayed wound healing and retarded tumor growth in perlecan heparan sulfate-deficient mice.
Perlecan, a modular proteoglycan carrying primary heparan sulfate (HS) side chains, is a major component of blood vessel basement membranes. It sequesters growth factors such as fibroblast growth factor 2 (FGF-2) and regulates the ligand-receptor interactions on the cell surface, and thus it has been implicated in the control of angiogenesis. Both stimulatory and inhibitory effects of perlecan ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 277 4 شماره
صفحات -
تاریخ انتشار 1999